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Abstract 

Large Language Models (LLMs) impress with their generative capabilities – yet they operate with 
a fundamental deficit: they lack the ability to systematically control reasoning processes, 
guarantee logical consistency, or transparently justify their conclusions. Approaches such as 
agent-based frameworks shift responsibility back to the language model – thereby inheriting its 
methodological weaknesses. 

This position paper advocates for an architectural paradigm shift: away from ever-larger models 
and towards cognitively controlled systems. At the center is the Cognitive Control Unit (CCU) – 
a novel functional module that fuses with an LLM to form the Cognitive Kernel, enabling for the 
first time structured, verifiable, and controllable reasoning processes. 

The results from early implementations are disruptive: 

• performance improvements over LLM-only systems are significant, 

• traceability and quality of reasoning reach a new level, 

• the cognitive architecture enables performance gains without larger models. 

The proposed architectural approach thus establishes not only a new technical foundation and 
future scalability path for Strong AI. It opens the door to trustworthy, auditable systems for highly 
regulated domains – such as law, medicine, or industry. Cognitive Control marks the transition 
from plausible simulation to verifiable intelligence. 
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1. Structural Deficits of Language and Reasoning Models 

The success of Large Language Models (LLMs) is rooted in their ability to produce linguistic 
coherence based on complex, multi-level probability distributions. LLMs deliver impressive 
results – but they can neither verify the semantic validity of their statements nor guarantee 
the logical consistency of their conclusions. 

1.1 The Central Paradox of Modern AI 

Recent advances in artificial intelligence have triggered a technological wave that promises to 
transform nearly every industry. Yet behind this impressive façade lies a structural deficit: 
systems of unprecedented generative power operate with a fundamental lack of control 
and verifiability. 

A recent survey on logical reasoning in LLMs summarizes this weakness succinctly: 

" LLMs are also prone to producing responses contradicting themselves across 
different questions, which is regarded as a violation of logical consistency. [...] 
In addition, a state-of-the-art Macaw question-answering LLM answers ‘Yes’ to 
both questions ‘Is a magpie a bird?’ and ‘Does a bird have wings?’ but answers 
‘No’ to ‘Does a magpie have wings?’, which violates the transitivity consistency.” 
(Cheng et al., 2025, pp. 1–2) 

 
While new model variants and benchmarks promise progress in the area of reasoning, these 
developments are of limited reliability in terms of genuine result accountability: the model 
simulates logical behavior based on stochastic word sequences – but it does not control its 
reasoning path or validate the correctness of its conclusions. 

1.2 The Limits of Probabilistic Reasoning 

An LLM simulates logical behavior by extracting patterns and structures from its training data 
and applying them to new problems. This process is based on predicting the most likely next 
word sequence – not on a deterministic application of logical rules. The model neither actively 
controls the reasoning path nor validates the correctness of intermediate steps or final 
conclusions. 

Another recent survey on logical reasoning in LLMs highlights this weakness clearly: 

" LLMs exhibit inconsistent performance in structured reasoning tasks such as 
deductive inference [...] This inconsistency arises from their reliance on 
surface-level statistical correlations rather than causal relationships, coupled 
with limited out-of-distribution generalization)" (Liu et al., 2025, pp. 7) 

 

Thus, LLMs encounter a methodological limit: they produce arguments that sound plausible, but 
lack the capacity for systematic problem decomposition and controlled validation of their 
reasoning steps. 

1.3 Proposed Solutions 

Contemporary mainstream agent frameworks attempt to address this gap through tool use, 
memory management, and retrieval. However, these systems tend to be fragile, difficult to 
maintain, and exhibit decision paths that are hard to trace and prone to unpredictable 
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behavioral shifts. They typically delegate central control and decision-making functions back to 
the LLM itself, thereby inheriting the foundational problems of the underlying language model. 

This inefficiency and lack of controllability is a growing concern, especially for complex systems 
– as described in a recent survey on “Efficient Reasoning”: 

"However, a growing concern lies in their tendency to produce excessively long 
reasoning traces, which are often filled with redundant content (e.g., repeated 
definitions), over-analysis of simple problems, and superficial exploration of 
multiple reasoning paths for harder tasks. This inefficiency introduces 
significant challenges for training, inference, and real-world deployment (e.g., in 
agent-based systems), where token economy is critical." (Qu et al., 2025, pp. 1) 

 
These structural deficits have led AI research to two main approaches: 

• Chain of Thought Monitoring, for overseeing reasoning processes, and 
• Context Engineering, for optimizing informational input. 

Both approaches address important aspects of the problem and will be considered individually, 
including their current limitations.  
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2. Chain of Thought Monitoring: An Approach to “Thought Control” 
A recent proposal to address the control problem in AI systems is known as Chain of Thought 
(CoT) Monitoring – the deliberate oversight of a language model’s reasoning paths. The core idea: 
if the cognitive steps taken by the model are made transparent, it becomes possible to detect 
flawed or harmful reasoning early and intervene accordingly. 

A seminal paper by leading AI safety researchers describes the inherent fragility of this 
approach: 

" CoT monitoring is not a panacea. Just as a model’s activations at a particular 
layer do not represent the entire reasoning process behind a model’s 
prediction, CoT reasoning traces are incomplete representations [...] or 
eventually drift from natural language." (Korbak et al., 2025, pp. 2) 

 
Such outputs require interpretation and are difficult to assess definitively – making reliable 
oversight challenging. For this reason, leading AI research labs – including OpenAI, Google 
DeepMind, Anthropic, SSI, and Thinking Machines – propose a process-oriented form of 
monitoring. Instead of merely observing output text, the reasoning process itself should be 
structured and made analyzable via verifiable intermediate steps. A key requirement for this is 
the use of so-called logic artifacts – semi-structured content that can be algorithmically 
validated and leaves less room for subjective interpretation. 

Research supports the potential of this approach: 

" We also show that using semi-structured reasoning allows one to detect 
reasoning flaws—in fact, it is surprisingly easy to find likely errors in semi-
structured reasoning." (Leng et al., 2025, pp. 2) 

 
However, this approach faces a fundamental limitation: language models are probabilistic, non-
deterministic systems. Their reasoning paths typically consist of free-form text or simulated 
inner monologues. Such outputs are interpretive and inherently ambiguous – which makes 
reliable oversight difficult. 

As already mentioned, process-oriented monitoring relies on the use of logic artifacts – semi-
structured elements that can be algorithmically validated and reduce interpretive ambiguity. 
These artifacts may take the form of axioms or other explicit knowledge units. While simple 
monitoring of free-form text may provide initial signals, structured artifacts enable active control 
and validation of the reasoning process. In this way, passive observation is transformed into 
controlled, verifiable problem solving.  
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3. Context Engineering: Optimizing Performance and Reliability 
To improve the performance and reliability of LLMs, a formal discipline has emerged: Context 
Engineering – the systematic design and management of LLM input to enhance output quality 
and consistency. 

3.1 The Taxonomy of Context Engineering 

Context Engineering goes far beyond simple prompt design and encompasses the structured 
optimization of the entire informational payload. A comprehensive taxonomy distinguishes the 
following core components: 

1. Context Retrieval and Generation: all methods for obtaining relevant information, from 
well-formed instructions to dynamic retrieval of external knowledge, 

2. Context Processing: techniques for handling the retrieved information, including long-
sequence processing and iterative self-refinement, 

3. Context Management: the efficient organization and storage of context over time, 
including memory hierarchies and compression techniques. 

3.2 Implementation Concepts Exist on Multiple Levels 

 

Figure 1: Context Engineering Evolution Timeline (Mei et al., 2025, S. 8, Figure 2) 
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The most prominent industry solutions can be seen as advanced implementations of context 
engineering principles: 

• Retrieval-Augmented Generation (RAG): enriching the LLM with relevant information 
from external knowledge sources at runtime, helping to reduce hallucinations and 
enable domain-specific knowledge, 

• Memory Systems: persistent memory architectures that overcome the inherent 
statelessness of LLMs and enable coherent dialogue over extended periods, 

• Tool-Integrated Reasoning: dynamic context assembly through iterative enrichment 
during the reasoning process, allowing the model to exceed its inherent limitations. 

3.3 The Remaining Deficit 

Despite significant progress, context engineering techniques face a fundamental limitation: they 
focus on managing the informational payload – that is, the input to the LLM’s reasoning process. 
The cognitive process itself – how the LLM interprets, weighs, and draws conclusions from this 
input – remains an impenetrable black box. 

This input-centric focus is made explicit in the formal definition of the term: 

" Context Engineering re-conceptualizes the context C as a dynamically 
structured set of informational components, c₁, c₂, ..., cₙ. These components 
are sourced, filtered, and formatted by a set of functions, and finally 
orchestrated by a high-level assembly function, A.“ 
  
 
(Mei et al., 2025, pp. 8) 

 

As discussed in Section 1, the actual reasoning process within an LLM remains 
methodologically opaque. Context Engineering cannot change this: it improves the input, but 
not the internal controllability or verifiability of the conclusions. 

What’s needed, then, is an architecture that not only delivers context but also orchestrates the 
reasoning process itself.  
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4. The Cognitive Control Unit: CoT Monitoring, Context Engineering Plus 
Stepwise Reasoning and Embedded Validation 
To break through the inference black box, more is needed than improved prompts or observed 
reasoning paths. What’s required is an architectural functional module that actively organizes, 
validates, and controls the reasoning process – a new layer of architecture above the language 
model. 

As part of our research and development activities, we have created a completely new 
architectural module that works in close interaction with one or more LLMs and fuses with them 
into a new class of AI architecture. 

The core idea is to combine the expressive power of generative language models with the 
structural control logic of a formal system – enabling controlled, verifiable reasoning. 

4.1 High-Level Functional Principle and Architecture of the CCU 

The CCU itself does not generate text. Its function is to organize and monitor the reasoning 
process. The CCU is responsible for: 

• requesting context-relevant artifacts from the language model, 

• storing and updating these artifacts in the cognitive working memory, 

• context composition – dynamically selecting and weighting relevant information during 
reasoning, 

• process control – determining which reasoning operations to perform at what time, 

• and validating intermediate steps and final results for consistency and conformity 
(using axioms; see Section 5). 

The core principle of the CCU and its interaction points with the LLM are illustrated in the 
following diagram: 

 

Figure 2: Basic Principle of the CCU 
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From a technical standpoint, the CCU consists of five dedicated software services that 
communicate in an event-driven manner. One of the services handles communication with the 
LLM(s). The autonomous interaction among the services is defined by the specific topology of 
services, their input and output topics, and their event structures. The schematic interaction is 
illustrated below: 

 

Figure 3: Interaction Pattern of the CCU-Services 

The event bus serves as both the medium for cognitive data exchange and the system’s cognitive 
working memory. Except for the initial user query, the interaction between services and between 
services and LLMs requires neither initial configuration nor runtime control from outside – the 
system operates fully autonomously and, in abstract terms, fuses into a fundamentally new 
integrated functional block: what we call the Cognitive Kernel (explained in more detail in 
Section 5). 

4.2 Cognitive Schemata & Axioms: External Auditability and the Transition to 
Formal Systems 

CCU-based architectures currently operate using natural language as the carrier and expression 
medium for logic and semantics. Reasoning processes are based on linguistically represented 
content within an epistemic framework – for instance, in statements like “Grass is green.” Each 
textual artifact not only represents a semantic mapping of the world but also functions as an 
operational unit within the epistemic space: it carries meaning, can be related to other artifacts, 
and is subject to logical derivation. 

This places the system in the tension between free linguistic expressiveness and the need for 
formal structure. This tension is intentional: it allows complex content to be represented in a 
flexible, human-readable form without sacrificing structural control. The transition from 
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language to verifiable cognitive operations occurs through the principle of semantic structuring – 
the systematic extraction and validation of logical statements from within linguistic contexts. 

Unlike neuro-symbolic systems, which establish symbolic representations separately from the 
sub-symbolic model, the CCU follows an integrated approach: logical artifacts are created 
directly in interaction with the language model and processed in the same context. This creates 
a tight coupling between expression (text) and structure (schema) without requiring a separate 
representational logic. In the medium term, future generations of the CCU are expected to 
incorporate explicit logical operators. 

This distinction is explicitly articulated: 

„Hence, Neuro-Symbolic AI is ‘a composite AI framework that seeks to merge 
the domains of Symbolic AI and Neural Networks” [or more broadly put, Sub-
Symbolic AI] “to create a superior hybrid AI model possessing reasoning 
capabilities’.“ (Colelough & Regli, 2025, pp. 3) 

Distinction from Neuro-Symbolic Systems: 
Whereas neuro-symbolic AI architectures typically rely on explicitly modeled, external symbolic 
structures, the CCU takes a fully integrated approach: semantics, control, and expression 
remain in the domain of natural language, but are operationalized through structuring artifacts 
and declarative control logic. Symbolic functionality (e.g., logical operators) can be integrated 
via function calling without ever leaving the realm of natural language. 

4.2.1 Declarative Control via Cognitive Schemata and Axioms 
Formal reliability arises from the seamless interaction of two structural elements: 

• Cognitive Schema: an auditable schema that defines the permissible path for solving a 
problem. It defines allowed state transitions, required validation steps, and the structure 
of the reasoning process – effectively acting as a “reasoning template”, 

• Axioms: externally defined, auditable prompt components that enable deductive 
derivation and validation at defined points in the reasoning process. These are 
immutable directives that the system cannot alter and serve as a bridge to formal 
system. 

The CCU does not operate heuristically, but according to an auditable Cognitive Schema – a 
declarative, model-agnostic meta-structure that defines the high-level logic of the reasoning 
process. The schema defines not the result, but the path to the result. 
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Figure 4: High-Level Reasoning Workflow of the CCU 

Both structural elements – schema and axiom – are externally visible and auditable. While 
axioms define conditions for content validity, the schema structures the formal reasoning path. 
Both are based on human best practices – i.e., methodologically sound procedures aligned with 
scientific standards. 

In the context of the Cognitive Kernel, the notion of “truth” is pragmatic and procedural, not 
ontological. A statement like “Grass is red” is not evaluated based on an objective world truth, 
but via a validation process grounded in externally defined axioms and the LLM’s semantic 
knowledge base. 

The system does not ask “Is this objectively true?”, but rather “Is this statement consistent with 
my rules?” In this sense, “truth” is the result of a defined validation process. 

Concretely: if the LLM generates the hypothesis “Grass is red”, the CCU triggers a validation 
operation based on an axiom such as “Check whether hypothesis X is semantically valid.” This 
validation is not based solely on the language model’s internalized world knowledge. Instead, 
the CCU actively manages the validation context and employs declarative constraints, policies, 
or external knowledge sources (e.g., rulebooks, ontologies, domain knowledge stores) to assess 
the hypothesis. This creates a determinate, tightly defined validation space comprising 
hypothesis + rule – greatly reducing the LLM’s probabilistic fuzziness and increasing the 
reliability of the result. 

In plain terms: instead of letting the language model guess based on its internal knowledge 
alone, its output is deliberately checked against external, trusted facts – making the final result 
significantly more reliable and comprehensible. 

In this interplay, epistemic validity arises from two components: the formal validity of the 
reasoning path (schema + axiom) and the semantic plausibility of the outcome given the 
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language model’s knowledge distribution. Truth, then, is not absolute – but an internally 
reconstructable compatibility between hypothesis, rule set, and world knowledge – 
operationalized through transparent, controlled inference. 

This separation is explicitly modeled: the LLM acts as a semantic engine, while the CCU controls 
which rules (axioms, constraints, policies) apply to which hypotheses. The rule set exists 
outside the model and can be updated with external knowledge sources or enhanced via 
retrieval. This creates a clear methodological separation between “validation rule” (external and 
transparent) and “knowledge base” (internal or retrieved). 

4.2.2 Guaranteeable Processes Instead of Merely Plausible Sequences 
The CCU architecture thus enables not only functional cognition, but also systemic 
controllability. Thanks to the cognitive schemata and declarative axioms, the entire reasoning 
process is: 

• transparent, because each step is explicit, 

• reconstructable, because artifacts are documented, 

• verifiable, because rules and axioms can be defined externally. 

This establishes a connection to formal systems in the spirit of Kurt Gödel: language remains the 
carrier medium for semantics and logic, yet becomes functionally decoupled from its systemic 
processing – while still remaining structurally embedded. The CCU serves as the architectural 
bridge between the open semantic space of language and the structured world of formal 
inference. 

Formal systems create a verifiable foundation for decision-making processes – particularly in 
domains that demand traceability, auditability, and regulatory compliance. They allow not only 
results to be audited, but also the reasoning paths that led to them. For enterprises, this means 
reliable AI-based automation even in highly sensitive areas like law, government, medicine, or 
industry. 

4.2.3 Distinction from Agent-Based Validation 
Unlike agentic or purely model-based systems: 

• the reasoning path is auditable – not just the result, 

• we as providers can guarantee that specific reasoning operations have actually taken 
place and that specific paths were followed, 

• deductive steps use axioms – which are themselves auditable. 

This level of traceability and external auditability marks a fundamental difference from agent-
based frameworks: while those fully delegate control back to the LLM, the CCU operates based 
on externally auditable rules. The CCU acts as a meta-controller: it requests specific artifacts 
from the LLM and validates each step before initiating the next. 

Another core principle of the Cognitive Kernel is negative tolerance: if the system detects logical 
inconsistencies, missing prerequisites, or irreconcilable contradictions during reasoning, it 
terminates the process in a controlled way and produces no result. 
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This stands in contrast to conventional LLM systems, which often produce seemingly plausible 
but factually incorrect answers even in ambiguous or unsolvable scenarios. The Cognitive Kernel 
prioritizes methodological integrity over forced outcomes – a deliberately chosen safety 
principle, particularly essential in regulated or safety-critical contexts. 

4.3 Methodology: Deductive Reasoning via Logic Artifacts 

To ensure process guarantees as described above, the CCU architecture does not rely on 
stochastic “reasoning” by the LLM, but implements a formal process of deductive inference. 
This approach allows logically valid conclusions to be drawn from a given set of premises. 
The generic process orchestrated by the CCU adheres to classical logical principles and is 
driven by logic artifacts and axioms: 

• Logic Artifacts are semi-structured informational units used during reasoning (e.g., a 
plan, a directive, a hypothesis, a proposed solution), 

• Axioms are immutable, external rules that define how these artifacts are to be logically 
connected and processed. 

This methodological separation of content generation (LLM) and logical process control (CCU) 
results in a system that does not merely produce plausible texts, but verifiably follows a valid 
reasoning path. 

Note on terminology: 
The term deduction in this document does not refer to strictly formal logical systems in the 
mathematical sense, but to a semantic, text-based form of deduction within a structured, 
controlled context. The statements themselves are formulated in natural language; validity 
checks are performed via semantic constraints. Logical control is applied declaratively via the 
Cognitive Schema, and – if needed – through explicit logical operators via function calling. 

4.4 Summary 

The CCU builds on ideas from CoT Monitoring and Context Engineering – but takes a decisive 
step further: by enforcing stepwise logical and semantic inference with embedded validations. 
Abstractly speaking, this process mirrors human logical reasoning. The fragility of CoT 
Monitoring is not resolved through better oversight, but through better design. Research on the 
monitorability of reasoning chains confirms this: 

" Research strategies that aim to unconditionally preserve CoT monitorability in 
its current forms may miss productive safety opportunities of this kind." (Korbak 
et al., 2025, pp. 7) 

 
Rather than passively observing a potentially misleading reasoning process, the CCU 
architecture enforces the generation of an explicit, verifiable, and stepwise reasoning protocol. 
At the same time, the CCU fundamentally extends the scope of Context Engineering: instead of 
merely optimizing the input, it actively and dynamically controls the logical artifacts throughout 
the entire reasoning process. What was once a static preparatory act becomes a continuous, 
state-dependent control mechanism for the cognitive workflow. Put simply: the CCU is the 
previously missing counterpart to the LLM – the component that brings structure and control. 
Raw intelligence is channeled into disciplined form and transformed into safeguarded 
conclusions.  
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5. Cognitive Kernel: CCU & LLM Are More Than the Sum of Their Parts 

5.1 A New Functional Module from LLM & CCU: The Cognitive Kernel 
The integrated collaboration between the Cognitive Control Unit (CCU) and the Large Language 
Model (LLM) forms what we call the Cognitive Kernel – the “intelligence core” of autonomous 
decision-making and action systems. The inner core of our cognitive systems thus consists 
not only of models but of models + CCU. 

The roles are clearly divided: 

• The LLM provides linguistic expressiveness, semantic diversity, and interpretation – the 
"raw thoughts", 

• The CCU structures and controls the reasoning process – it decides what is valid, what 
supports what conclusion, and how complex tasks are decomposed. 

Together, LLM and CCU form a cognitive unit in which language processing and structured 
control interact architecturally for the first time. The LLM evolves from an uncontrolled generalist 
into a tightly controlled, highly specialized semantic processor operating within a formal 
framework – together forming the Cognitive Kernel that enables the resolution of complex 
reasoning tasks. 

5.2 No Training, No Configuration – Yet Cross-Domain Ready 

A core feature of the Cognitive Kernel is its ability to be deployed immediately – without model 
training, fine-tuning, or complex initial configuration. The control logic of the CCU is entirely 
based on declarative definitions: Cognitive Schemata and Axioms define how a problem is to be 
analyzed, without requiring any modification of the underlying models. 

This enables cross-domain reasoning. One and the same system architecture can be applied to 
completely different fields – from industrial standards to legal case structures or medical 
guidelines. Only the applied schema and supplied axioms need to be adapted or extended. 
Thus, the Cognitive Kernel adapts not by training, but by replacing its reasoning structure. 

The result is a highly flexible, controllable system that can operate in new environments with 
minimal integration effort and maximum auditability. 

5.3 Synergetic System Behavior: More Than the Sum of Its Components 

The collaboration of LLM and CCU creates synergetic system behavior that cannot be derived 
from the isolated capabilities of each component. The language understanding of the LLM and 
the structured process control of the CCU form a new functional unit – a cognitive system that 
thinks, verifies, and decides deductively. 

This functional emergence goes beyond additive performance gains: it stems from architectural 
integration, where semantic expressiveness (LLM) and cognitive control (CCU) not only coexist 
but contextualize each other. The CCU structures the reasoning path via declarative rules and 
validations; the LLM provides semantic richness and interpretive ability for hypothesis 
generation. Only through this interaction do explicit, reconstructable reasoning paths emerge – 
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including controlled hypothesis formation, documented intermediate steps, and transparent 
deductions. 

This synergetic architecture leads to measurable improvements across several dimensions: 

• Reasoning paths become explicit and traceable, 

• Contexts are formed dynamically, no longer via static prompting, 

• Logical operations (such as deduction) are structurally embedded, not statistically 
inferred. 

The system can, for example, detect contradictory contexts and terminate the reasoning 
process before a faulty conclusion is drawn. Hallucinations are identified through enforced 
validations, preventing a false assumption from triggering follow-on errors – meaning the 
error is either corrected or the process is halted and the step is marked as failed. This is a 
capability that neither an LLM alone nor a conventional RAG approach can provide.  

5.4 From Simulation to Control 

Large language models are impressive simulation engines. They generate highly plausible 
answers – but what they simulate are thought processes, not methodical reasoning. Their 
conclusions may sound convincing but are not subject to control: the reasoning path remains 
hidden, intermediate steps are neither structured nor verifiable, and logical errors often go 
undetected. 

The Cognitive Kernel breaks this illusion: it replaces purely stochastic response generation with 
a structured reasoning process. The interplay of CCU and LLM enables not only the generation of 
plausible outputs but their controlled, stepwise derivation – using documented hypotheses, 
validated steps, and verifiable conclusions. 

As a result, control shifts from the outcome to the process itself: What a system says is no 
longer the only thing that matters – how it reaches that conclusion becomes equally important. 

This methodological transparency is not a post-hoc documentation effort, but an inherent part 
of the reasoning process. Every reasoning path is reconstructable, every logical transition 
auditable, every step subject to oversight. 

Thus, a new paradigm of machine reasoning emerges: no longer a rhetorically convincing 
simulation of intelligence, but a controllable, reproducible cognitive process – a system that 
thinks, and can be observed, directed, and safeguarded while doing so.  
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6. e1 & e2: The First Cognitive Kernels with CCU-Based Architecture 

6.1 The First Breakthrough on the Path to Cognitive Systems: e1 

With e1, we have already developed the first production-grade AI system based on a Cognitive 
Kernel. The e1 implementation proved the fundamental feasibility of the concept and delivered 
performance on par with leading reasoning models – while providing superior process control 
and transparency. 

In the Zebra Logical Bench, a stand-alone GPT-4.1-mini achieves 19.5% in the XL puzzle 
category. When combined with the CCU – without changing the model itself – it reaches 69%, 
placing it within striking distance of the benchmark-leading o3-mini high (76%). 

 

Figure 5: Impact of the CCU on Cognitive Performance 
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6.2 Optimizing the Cognitive Architecture as a Vector for Scaling: e2 
research#1 

The central hypothesis was that the reasoning performance of the Cognitive Kernel could be 
significantly improved solely through optimization of the cognitive architecture – without any 
changes to the underlying language model. 

 

Figure 6: Impact of the Cognitive Architecture Optimization 

The observed performance gains were achieved entirely through optimization of the Cognitive 
Schema and targeted software engineering at the level of the CCU services – with no additional 
training, no fine-tuning and no enlargement of the language model. 

This establishes architectural optimization as a new, independent scaling vector. While the 
broader industry continues to follow a resource-intensive path of scaling via ever-larger models, 
the Cognitive Control approach demonstrates an alternative – and potentially far more efficient 
and sustainable – route: achieving significant performance increases through smarter rather 
than larger AI systems.  
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6.3 Production-Ready Applications 

Even prior to the e2 optimizations, it became clear: the Cognitive Kernel principle is practically 
viable. e1 is already being used in demanding production environments – with high stability and 
full transparency. 

For example, e1 is deployed at a DAX-listed corporation to assist in the pre-processing of 
complex case assessments in tax law and accounting. It delivers a level of analytical depth 
unmatched by any of the reference-tested language or reasoning models. 

The resulting outputs speak for themselves and demonstrate the present and future potential of 
cognitive reasoning – not only in benchmarks but also in real-world, production-grade use cases. 

6.4 Limitations of the CCU Architecture 

Despite the advances and performance improvements achieved, there remain methodological 
and technical limitations that must be considered in future development: 

• Context size: The Cognitive Kernel is limited by the context window of the underlying 
LLM. Although context is used efficiently through selection and compression, very 
complex tasks with high context demands may require artificial reduction, 

• Axiom coherence: When contradictory axioms or ambiguous constraints are used, 
reasoning processes may run correctly but become unsolvable. The system aborts in 
such cases – but some interpretive effort remains, 

• Complexity vs. interpretability: As control granularity increases, so does the number of 
reasoning operations. For certain tasks (e.g., simple classification), the architecture may 
appear overly complex. These limitations are inherently application-dependent. 
However, the architecture was designed to ensure robustness and negative tolerance – 
particularly through controlled aborts in the event of contradictions and minimal 
dependence on model training. 
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7. Conclusion and Outlook: Cognitive Kernel as a New Foundational 
Architecture for Secure and High-Performance AI Systems 

7.1 Preliminary Conclusion 

Cognitive Reasoning enables: 

• step-by-step, traceable reasoning, 

• controllable, context-driven decision-making, 

• high cognitive performance even with small or medium-sized models, 

• applicability in domains with strict demands for validity, explainability, and 
auditability – such as law, government, medicine, industry, or energy. 

The architecture of the Cognitive Kernel was deliberately designed with regulatory requirements 
in mind. Documented reasoning paths, declarative rules, and controlled state transitions enable 
transparent auditing – aligned with the risk-based approach of the EU AI Act as well as 
established documentation and revision standards in regulated industries (e.g., law, medicine, 
finance, public administration, or critical industrial automation). This makes the Cognitive 
Kernel not only a performant, but also a provably compliant foundation for trustworthy AI 
processes. 

7.2 Outlook: A New Generation of Strong and Trustworthy AI 

What emerges is a new system class, beyond purely model-centric thinking. We do not position 
Cognitive Control as a single product or feature, but as a foundational principle for a next 
generation of artificial intelligence. 

It is the architectural bridge connecting the open, semantic space of natural language with the 
formal, logical space of verifiable reasoning. By putting the structure of reasoning paths at the 
center, it lays the foundation for AI systems that are not only powerful and intelligent, but also 
trustworthy, controllable, and truly explainable. 

The Cognitive Kernel thus stands not only for a new architectural pattern, but for a shift in 
direction: from probability to responsibility, from simulation to substance. 

 

The architecture of the Cognitive Kernel with its Cognitive Control Unit defines not just a new 
technical solution – but a paradigm shift: from the hope for transparency to the guarantee of 
traceability, from plausible outcomes to guaranteed processes.  



 

 19 

References 
[Qu et al., 2025] Xiaoye Qu, Yafu Li, Zhaochen Su, et al. (2025). A Survey of Efficient Reasoning 
for Large Reasoning Models: Language, Multimodality, and Beyond. arXiv:2503.21614v1. 

[Colelough & Regli, 2025] Brandon C. Colelough & William Regli. (2025). Neuro-Symbolic AI in 
2024: A Systematic Review. arXiv:2501.05435v2. 

[Cheng et al., 2025] Fengxiang Cheng, Haoxuan Li, Fenrong Liu, et al. (2025). Empowering LLMs 
with Logical Reasoning: A Comprehensive Survey. arXiv:2502.15652v3. 

[Korbak et al., 2025] Tomek Korbak, Mikita Balesni, Elizabeth Barnes, et al. (2025). Chain of 
Thought Monitorability: A New and Fragile Opportunity for AI Safety. arXiv:2507.11473 

[Leng et al., 2025] Jixuan Leng, Cassandra A. Cohen, Zhixian Zhang, et al. (2025). Semi-
structured LLM Reasoners Can Be Rigorously Audited. arXiv:2505.24217v1. 

[Liu et al., 2025] Hanmeng Liu, Zhizhang Fu, Mengru Ding, et al. (2025). Logical Reasoning in 
Large Language Models: A Survey. arXiv:2502.09100v1. 

[Mei et al., 2025] Lingrui Mei, Jiayu Yao, Yuyao Ge, et al. (2025). A Survey of Context Engineering 
for Large Language Models. arXiv:2507.13334v2. 

https://arxiv.org/pdf/2503.21614
https://arxiv.org/pdf/2501.05435
https://arxiv.org/html/2502.15652v3
https://arxiv.org/pdf/2507.11473
https://arxiv.org/pdf/2505.24217
https://arxiv.org/pdf/2502.09100
https://arxiv.org/pdf/2507.13334

