Structure through Architecture: From AI Models to Thinking Machines

Finally productive AI agents

AI models are capable of great things. But they alone aren’t enough to give AI agents the necessary structure and reliability. We are solving this problem at its root—creating a new class of systems for trustworthy machine thinking and reasoning.

Quickstart for Business Teams

See thought processes unfold in real-time: with comprehensive explanations, logically-reasoned conclusions, and transparent solution paths.

Quickstart for Tech Teams

Our API is structurally compatible with the OpenAI SDK. This enables easy migration. Find more information in our documentation

Gewinner des IONOS AI Project of the Year 2025 Awards →

The Core Challenge:

The Decision Logic of AI Agents

What's missing is structure

Would you trust a person who could neither thoroughly explain nor justify their solution path?
Generation + Structuring = Thinking Machine
AI models (based on transformers) string one word after another and—due to their internal setup and functional principle—have no concept of “thought structures.” This isn’t a ‘failure’ of the models, but rather expected behavior.
However, professionally demanding decisions require structured, step-by-step, and comprehensible thinking and reasoning. This is precisely where the current gap in the market lies.

To turn word sequences into high-quality thought processes, what’s needed—beyond the AI models themselves—is an explicit “Thought-Structuring & Process-Guidance Architecture.” An additional layer above the AI models. This is exactly what we have built. You can read more here.

Thinking Machines turn raw AI output into understandable reasoning—turning potential into productivity.

AI from 'Thinking Machines':

The Foundation for your Sophisticated AI Agents

When you need to build AI agents for sophisticated tasks in business-critical processes—the very places where real business value is generated—AI models alone quickly hit their limits. You will save significant effort, frustration, and validation work by relying on Thinking Machines in these scenarios. Our technology provides the perfect entry points for this—and is, by design, just as easy to use and integrate as language model AI.
For Business Teams

Via our Web UI

You can input individual tasks into our Web UI to initiate decision-making processes and gain insight into all conclusions.

This allows you to gain trust, control, and reproducible decision quality.

For Tech Teams

Via our API

You can input individual tasks into our Web UI to initiate decision-making processes and gain insight into all conclusions.

This allows you to gain trust, control, and reproducible decision quality.

For End-to-End

Agentic Workloads as Turnkey Projects

Our Solutions Team supports your projects involving agentic workloads.

Either in collaboration with your tech teams (which we call “Co-Engineering”)—or as complete turnkey solutions.

Thinking machines impress in demanding cases, with demanding customers

Our ‘Thinking Machines’ are already proving their value in a multitude of productive use cases, all of which depend on high-quality, structured conclusions with corresponding transparency and traceability. The following examples show a cross-section of different disciplines and process groups within companies, in the context of automated case pre-processing.

Fordern Sie uns heraus –
wir lieben komplexe Fälle:​

Beschreiben Sie uns Ihre Herausforderung, und wir zeigen Ihnen,
wie unsere Denkmaschinen-KI sie löst – transparent, begründet und reproduzierbar.

Wir bieten pro Quartal eine begrenzte Anzahl von Challenges, bei der wir im Rahmen ausgewählter Projekte die Leistungsfähigkeit unserer “Denkmaschinen”-Technologie unter Beweis stellen.

Die Challenge besteht im Kern daraus, dass wir Ihnen in einer abgesicherten Sandbox-Umgebung in maximal 4 Wochen beweisen, Ihre KI-Entscheidungen durch Denkmaschinen-Technologie belastbar und transparent zu bekommen.

Kriterien für eine Bewertung sind u.a.:

  • müssen Sie KI-Entscheidungen erklären, nachvollziehen oder auditieren können?
  • unterliegen Ihre Entscheidungen expliziten Richtlinien wie z.B. technische Normen, Compliance-Regeln, Verwaltungs-Vorschriften oder dgl.?
  • und noch eine dritte Frage…

Fordern Sie uns heraus – wir lieben komplexe Fälle:

Beschreiben Sie uns Ihre Herausforderung, und wir zeigen Ihnen,
wie unsere Denkmaschinen-KI sie löst – transparent, begründet und reproduzierbar.

Beschreiben Sie uns Ihre Herausforderung, und wir zeigen Ihnen, wie unsere Denkmaschinen-KI sie löst – transparent, begründet und reproduzierbar.

Machen Sie mit bei der Denkmaschinen-Challenge und erleben Sie, wie maschinelles Denken wirklich funktioniert!

Die Bewerbung ist formlos: schildern Sie uns Ihren Fall und Ihre Herausforderungen. Bitte beachten Sie aber, dass Denkmaschinen auf textbasierte Agentic Workloads spezialisiert sind (d.h. keine Computer Vision oder Timeseries Cases).

FAQ

Frequently Asked Questions
Prompts control output, but they don’t create a systematic way of thinking. They influence what a model says, not how it thinks. Thinking Machines provide an independent architecture for logical structuring, reasoning, and validation. This creates a verifiable thought process—not just better-formulated output.

LLMs reproduce linguistic patterns from their training data, but they have no concept of thoughts or justifications. Yet, these are the very structural elements needed for the decision logic of sophisticated AI agents. This is why LLMs alone are the wrong starting point for AI agents.

Thinking Machines embed LLMs into an architecture that enables structured thinking and reasoning. The LLM provides semantic coherence; the Thinking Machine generates and guides thought processes, creating conclusions and decisions from them. Simply put: Thinking Machines are LLMs + cognitive architecture for thinking & reasoning.

Guardrails prevent errors after thinking—Thinking Machines prevent them during thinking. They integrate policies, norms, and rules directly into the logical reasoning process, instead of checking them retroactively. That is the difference between external control and internal cognitive control.

Short answer: no. Frameworks orchestrate prompts & co.; Thinking Machines orchestrate thoughts. They create a cognitive layer above LLMs. The goal isn’t integration, but intelligence control: structured decision logic across APIs, models, and data sources.

This makes Thinking Machines a new class of system, not a new shortcut.

Thinking Machines technically separate hypothesis formation from conclusion. They check every deduction for logical consistency and document justifications in a traceable way.

The result is not “probable,” but reasoned. Hallucinations can be identified, explained, and corrected—not hidden.

Yes. You can test Thinking Machines directly in the web interface or integrate them via our API just like a language model.

Both are free to get started and require no integration. The AI’s thinking changes—not your setup.

Embrace the
power of AI

Zugang zum Whitepaper

Gib deine Daten ein und erhalte sofort Zugang zu unserem exklusiven Whitepaper.

Deine Daten sind bei uns sicher.

Zugang zum Whitepaper

Gib deine Daten ein und erhalte sofort Zugang zu unserem exklusiven Whitepaper.

Deine Daten sind bei uns sicher.

Zugang zum Whitepaper

Gib deine Daten ein und erhalte sofort Zugang zu unserem exklusiven Whitepaper.

Deine Daten sind bei uns sicher.

Zugang zum Whitepaper

Gib deine Daten ein und erhalte sofort Zugang zu unserem exklusiven Whitepaper.

Deine Daten sind bei uns sicher.

Zugang zum Whitepaper

Gib deine Daten ein und erhalte sofort Zugang zu unserem exklusiven Whitepaper.

Deine Daten sind bei uns sicher.